
r . ”

On Effectiveness of a Message-Driven Confidence-Driven
Protocol for Guarded Software Upgrading*

Ann Tai Kam Tso Leon Alkalai Savio Chau William Sanders
IA Tech, Inc. Jet Propulsion Laboratory University of Illinois

Los Angeles, CA 90024 Pasadena, CA 91109 Urbana, IL 61801

Abstract

In order to accomplish dependable onboard evolution, we develop a methodology
which is called guarded software upgrading (GSU). The core of the methodology is
a low-cost error containment and recovery protocol that escorts an upgraded software
component through onboard validation and guarded operation, safeguarding mission
functions. The message-driven confidence-driven (MDCD) nature of the protocol elim-
inates the need for costly process coordination or atomic action, yet guaranteeing the
system to reach a consistent global state upon the completion of the rollback or roll-
forward actions carried out by individual processes during error recovery. Aimed at
validating the effectiveness of the MDCD protocol with respect to its ability, in a real-
istic, non-ideal execution environment, to enhance system reliability when a software
component undergoes onboard upgrading, we conduct a stochastic activity network
model based analysis. The results confirm the effectiveness of the protocol as origi-
nally surmised. Moreover, the model-based analysis provides to us useful insights about
the system behavior resulting from the use of the protocol under various conditions in
its execution environment, facilitating effective utility of the protocol.

Keywords: Guarded software upgrading, error containment and recovery, checkpointing,

stochastic activity networks, reliability improvement

Corresponding Author: Ann T. Tai, a . t . taiQieee. org

*The work reported in this paper was supported in part by Small Business Innovation Research (SBIR)
Contract NAS3-99125 from Jet Propulsion Laboratory, National Aeronautics and Space Administration.

1 Introduction

The onboard computing systems for NASA’s future deep-space applications require to have
the ability to accomplish performance and dependability enhancement during a long-life
mission [l]. This capability is referred to as evolvability. Concepts related to evolvability
include hardware reconfigurability and software upgradability. A challenge that arises from
onboard software upgrade is to guard the system against performance loss caused by residual
design faults introduced by the modification of a spacecraft/science function. Besides the
previous lessons on how unprotected software upgrades caused severe damages to space
missions (see [a , 31, for example), a strong testimony emerged from MCI WorldCom’s recent
10-day frame relay outage [4]. The outage began August 5, 1999, four weeks after an upgrade
to a new switching software to allow the network to handle increased traffic. The incident
affected about 15% of MCI WorldCom’s network and 30% of its customers who rely on the
high-speed frame relay.

Although researchers have been investigating into dependable system upgrade for critical
applications [5, 61, the proposed solutions, to our best knowledge, all require special effort
for developing dedicated system resource redundancy. Due to the severe constraints on cost,
mass and power consumption of the spacecraft, NASA’s deep-space applications would not
be able to directly benefit from those solutions. Moreover, the new-generation onboard
computing systems such as the X2000 [l] which has being developed at NASA/JPL employ
distributed architectures. Accordingly, error contamination among interacting processes,
which received little attention from the prior work concerning dependable system upgrade,
is one of our major concerns. With the above motivation, we develop a methodology called
guarded software upgrading (GSU) [7]. The methodology is based on a two-stage approach:
The first stage is called onboard validation stage during which we attempt to establish high
confidence in the new version, through onboard test runs under the real avionics system and
environment conditions; whereas the second stage is called guarded operation stage during
which we allow the new version to actually service the mission under the escort of the old
version. To ensuring low development cost, we exploit inherent system resource redundancies
as the fault tolerance means. Specifically, we let an old version, in which we have high
confidence due to its long onboard execution time, to escort the new version through onboard
validation and guarded operation; we also make use of the processor that otherwise would
be idle during a non-critical mission phase during which onboard software upgrade takes
place, allowing concurrent execution of the new and old versions of the application software
component aimed for upgrading. To reduce performance cost, we devise an error containment
and recovery protocol by utilizing the pertinent features of our application. In particular,

1

. c

we discriminate i) between internal and external messages in terms of their criticality to the
mission, and ii) between the individual software components with respect to our confidence in
their reliability. As a result) the protocol is message-driven and confidence-driven (MDCD),
requiring no costly process coordination or atomic action. The MDCD protocol permits the
decisions on whether to take a checkpoint upon interprocess communication and whether to
rollback or roll forward during recovery to be made locally by individual processes, enabling
cost-effective checkpointing and cascading-rollback free error recovery. In this paper, we
focus on analyzing the effectiveness of the protocol during the guarded operation stage.

To account for potential process state contamination (due to the errors in the new version)
and messages validity) we adapt the notion of “global state consistency” from the literatures
concerning rollback recovery of hardware faults [8, 91. Based on the adapted notion) we
have developed theorems and conducted formal proofs to show that the MDCD protocol
guarantees that the system will reach a consistent global state upon the completion of the
rollback or roll-forward actions carried out by individual processes during error recovery
[lo, 111. Global state consistency is the most fundamental criterion for a correct recovery
and assures the system to be failure free if the MDCD protocol is run in an ideal execution
environment where 1) the “old” software components which are viewed as the high-confidence
components by the protocol are truly faultless) 2) error conditions in a process state will be
definitely manifested in the messages sent by the corresponding process) and 3) the error
detection mechanism has a perfect coverage. As any reliability enhancement schemes, the
realistic goal of the MDCD protocol is to significantly reduce system failure probability rather
than assuring the system to be failure free, due to that the ideal execution environment never
exists in real life. Accordingly, we are motivated to validate the protocol’s effectiveness in
terms of reliability improvement when the criteria for the ideal execution environment are
not satisfied) through probabilistic modeling. To realize the goal requires a model to capture
numerous interdependencies among system attributes. Accordingly, we choose to apply
stochastic activity networks (SANs) [12, 131 for the model-based analysis due to SANs’
capability of explicitly representing dependencies among system attributes. The results
confirm the effectiveness of the MDCD protocol and provide to us useful insights about
the system behavior in a non-ideal environment. Moreover, the study demonstrates that a
model-based analysis will enable us to estimate the extents to which we can relax the the
criteria for the ideal execution environment) facilitating effective utility of the protocol.

The remainder of the paper is organized as follows. Section 2 provides background infor-
mation. Section 3 describes the MDCD protocol for guarded software upgrading) followed
by Section 4 which presents a SAN model based reliability analysis that validates the effec-
tiveness of the protocol. The concluding remark highlights the significance of this effort.

2

2 Background: GSU Framework

The GSU framework is based on the Baseline X2000 First Delivery Architecture that com-
prises three high-performance computing nodes (each of which has a 128-Mbyte local DRAM),
a group of subsystem micro-controllers, and a variety of devices, all connected by the fault-
tolerant bus network that complies with the commercial interface standard IEEE 1394 [14].
Further, the DMA (direct memory access) engine that is built into the IEEE 1394 bus in-
terface is responsible for transferring data (messages) directly from the bus into either the
non-volatile memory on the PC1 bus or the processor local memory (where the message
buffer resides).

Since a software upgrade is normally conducted during a less critical mission phase when
the spacecraft and science functions do not require a full computation power, only two pro-
cesses corresponding two different application software components are supposed to concur-
rently run and interact with each other. To exploit inherent system resource redundancies,
we let the old version in which we have high confidence due to its long onboard execution
time escort the new version software component through onboard validation and guarded
operation. Further, we make use of the processor that otherwise would be idle to enable
the three processes (Le., the two corresponding to the new and old versions, and the process
corresponding to the second application software component) to execute concurrently. To
aid the description, we introduce the following notation:

Pyw The process corresponding to the new version of an application software
component.

Pyld The process corresponding to the old version of the application software
component.

P2 The process corresponding to another application software component (which
is not undergoing upgrade).

Figure 1 illustrates the two-stage approach. As shown in Figure l(a), during the onboard
validation stage, the outgoing messages of the shadow process PYw are suppressed but se-
lectively logged (as shown by the dashed lines with arrows), while PTw receives the same
incoming messages as the active process P:ld does (as shown by the solid lines with arrows).
Thus, PYw and P:ld can perform the same computation based on identical input data.

By maintaining an onboard error log that can be downloaded to the ground to facilitate
statistical modeling and heuristic trend analysis, onboard validation facilitates the decisions
on whether and when to permit PFw to enter mission operation. If onboard validation com-
pletes successfully, then Pyw and P;ld switch their roles and enter the guarded operation

3

t A
I
I
I

I

4 4

t t
(a) Onboard Validation Stage (b) Guarded Operation Stage

Figure 1: Two-Stage Approach to Guarded Software Upgrading

stage. In order to minimize the impact and risk on mission operation, onboard software
upgrading is usually carried out in an incremental manner. In particular, most upgrades
involve only a single software component at a time. As a result, the interaction patterns
(message types and ordering) among the processes will remain the same after an upgrade.
Accordingly, as indicated by Figure l(b), during the guarded operation, Py" actually in-
fluences the external world and interacts with process Pa, while the messages of P:ld that
convey its computation results to Pz or external subsystems are now suppressed and logged.
Should an error of PY" be detected, P?ld will take over PYw's active role and the system
will resume its normal mode. The guarded operation is enabled by an error containment
and recovery protocol that is described in the next section.

3 MDCD Protocol

3.1 Basic Assumptions

The following are our assumptions based on which we devise the error containment and
recovery protocol:

Al) The old version of a software component usually has a sufficiently long onboard exe-
cution time and thus can be considered significantly more reliable than the upgraded
version newly installed through uploading.

A2) An erroneous state of a process is likely to affect the correctness of its outgoing mes-
sages, while an erroneous message received by an application software component will
result in process state contamination.

4

A3) The error detection mechanism, acceptance test (AT), has a high coverage (the condi-
tional probability that the testing mechanism rejects a computation result given that
this result is erroneous).

A1 indicates that the likelihood that an error condition occurs in the old version of an
application software component can be considered negligible, implying Pyla and P2 will not
be treated as possible sources of process state contamination by the protocol. A2 implies
that if an outgoing message is validated by AT, then the process state of the sender process
and all the messages sent or received prior to performing the AT can be considered non-
contaminated and valid, respectively. Whereas A3 suggests that the event that an erroneous
command is released to devices is unlikely to occur.

3.2 Protocol Description

A major difficulty in error recovery for embedded systems is that we are unable to rollback
the effect of a computation error after it propagates to the devices. Since error propagation
in a distributed system is in general caused by message passing, the error containment and
recovery protocol we devise is message driven in the sense that,

1) Checkpointing is performed upon message passing or an event triggered by message
passing, and

2) Acceptance test (AT) is invoked when a process attempts to send a message to a
subsystem external to the computing node (e.g., a device).

We call the messages sent to the subsystems external to a computing node and the mes-
sages between processes external messages and internal messages, respectively. In embedded
systems, external messages are significantly more critical than internal messages because i)
they directly influence the mission operation and functions, and ii) their adverse effects can
not be reversed through rollback. Hence, for reducing performance cost, AT is only applied
to validate the external messages from the processes that are potentially contaminated (see
below for the definition). Further, Pyld does not perform AT because its external messages
will not be released to devices until after error recovery. On the other hand, when Pyw
or P2 passes an AT successfully, it sends a notification message to Pyla to let it update its
knowledge about the validity of process state and messages.

To eliminate the need for the costly process coordination or atomic action, we enforce
the following rule (which is indeed the necessary and sufficient condition for checkpointing)
to facilitate error containment and recovery efficiency:

5

W e save the state of a process via checkpointing if and only if the process is under
the following situation: Immediately before its process state becomes potentially
contaminated or right after its process state gets validated by acceptance test.

By “a potentially contaminated process state,” we mean 1) the process state of Pyw in which
we have not yet established enough confidence, or ’2) a process state that reflects the receipt
of a not-yet-validated message that is sent by a process when its process state is potentially
contaminated. Figure 2 illustrates the above concepts. The horizontal lines in the figure rep-
resent the software executions along the time horizon. Each of the shaded regions represents
the execution interval during which the state of the corresponding process is potentially con-
taminated. In the diagram, checkpoints Bk, Aj and B k + 2 are established immediately before
a process state becomes potentially contaminated (we call them Type-1 checkpoints), while
Bk+l, Aj+’, and Bk+3 are established right after a process state gets validated (we call them
Type-2 checkpoints). While all these checkpoint establishments are triggered by the events
of potential process state contamination and process state validation, the triggering events
themselves are induced by message passing. Therefore, checkpointing is message driven in
the protocol. Nonetheless, message passing is not the sufficient condition for a process to
establish a checkpoint. As implied by the necessary and sufficient condition for checkpoint-
ing stated above, message passing will not trigger a process to establish a checkpoint unless
the message passing event alters our confidence in the process state(s), that is, turning a
potentially contaminated process state into a validated state or vice versa. Therefore, the
protocol is both message driven and confidence driven. The detailed error containment and
recovery algorithms that constitute the MDCD protocol are shown in Appendix A. Note
that P;lld and P2 will update their knowledges about potential process state contamination
right after a Type-1 or Type-2 checkpoint establishment (e.g., each process will set its dirty
bit to 1 and 0, respectively).

Error recovery actions are also message driven and confidence driven in the sense that
the AT-based error detection are triggered by the event that PYw or P2 attempts to send
an external message. Upon the detection of an error, Pyld will take over PYw’s active role
and resume normal computation with P2 (the MDCD protocol will go on leave accordingly).
By checking their knowledge about process state contamination locally, both P:ld and P2
are able to make their decisions on rollback or roll forward in a straight forward manner.
Accordingly, there are three possible scenarios in error recovery’:

Scenario 1: Both P:ld and P2 rollback to their most recent checkpoints.

lNote that the scenario in which P71d rolls back and P2 rolls forward will never happen since P7ld will
gets contaminated only through Pa.

6

,yew

pold
1

p2

I Checkpointing +

@ Acceptance test - - -b

Message passing that
triggers checkpointing Interval during which process state

Message passing that does
not triggers checkpointing

is potentially contaminated

Figure 2: Message-Driven Confidence-Driven Checkpoint Establishment

Scenario 2: Both P;ld and Pz roll forward.

Scenario 3: P2 rolls back to its most recent checkpoint while P:ld rolls forward.

Note that our message-driven confidence-driven strategy is adapted from the checkpoint-
ing techniques for hardware error recovery [8]. Nonetheless, checkpointing techniques for
hardware error recovery concern solely the consistency between process states for assuring
correct recovery from hardware faults; as our objective is to mitigate the effect of residual
faults in an upgraded software component, our particular concern is the consistency among
the views of different processes on process states integrity, especially on the valid messages
(see Section 3.1) reflected in the process states. Accordingly, we adapt the terminologies and
definitions in [8, 91 as follows. A global state comprises the states of individual processes,
including messages between the processes and information concerning their verified correct-
ness. A valid checkpointing mechanism must assure that it is always possible for the error
recovery mechanism to bring the system into a global state that satisfies the following two
properties:

Consistency If m is reflected in the global state as a valid message received by a process,
then m must also be reflected in the global state as a valid message sent by the sender
process.

Recoverability If m is reflected in the global state as a valid message sent by a process, then
m must also be reflected in the global state as a valid message received by the receiving
process(es) or the error recovery algorithm must be able to restore the message m.

7

1 f

When two or more process states (or checkpoints reflecting process states) comprise a
global state that satisfies the consistency property, we say that these process states are
globally consistent, or say, they comprise a consistent global state. Based on the above
concepts, we derive Theorem 1, Corollaries 1 and 2 as presented below (the formal proofs
can be found in [lo, ll]), which claim that the recovery decisions made locally by the
individual processes satisfy the global state consistency property.

Theorem. 1 The most recent checkpoints of P;ld and P2 are always globally consistent.

Corollary 1 The process states of P;ld and P2 at time t that are not potentially contaminated
are globally consistent.

Corollary 2 If at time t the process state of P2 is potentially contaminated but that of eld

is not, then the process state of P;lld at time t and the process state of P2 reflected in its most
recent checkpoint (relative to t) are globally consistent.

As to recoverability, it is ultimately assured by the message log of P:ld and two key
entities, namely, msg-count and VRrW (see Appendix A). We omit further details since
they are out of the scope of this paper.

4 Analysis of Effectiveness

4.1 Motivation

The theorems presented in the last section imply that the MDCD protocol will assure the
system to reach a consistent global state upon the completion of the rollback or roll-forward
actions carried out by individual processes during error recovery. As claimed in Section 1,
the global state consistency will further guarantee the system to be failure free if the MDCD
protocol is run in an ideal execution environment. By “ideal execution environment,” we
mean an execution environment for the protocol that satisfies the following criteria:

C l) P:ld and P2 are perfectly reliable.

C2) Error conditions in a process state will be definitely manifested in the messages sent
by the corresponding process.

C3) Each AT has a perfect coverage.

8

As the realistic goal of the MDCD protocol is to significantly reduce the probability of
system failure rather than assuring the system to be failure free, the protocol is anticipated to
be effective in a non-ideal execution environment. Accordingly, the motivation of the model-
based reliability analysis presented below is to validate the effectiveness of the protocol
when it is run in an environment where C1, C2 and C3 are relaxed. Before we proceed to
describe the SAN models, we explain the impacts from relaxing these criteria on system
failure behavior as follows. Clearly, an imperfect coverage of AT may cause an erroneous
external message to go undetected and thus lead to an immediate system failure. And
a fault in P7ld or P2 may result in an undetected external erroneous message after error
recovery that brings the system back to its normal computation mode in which AT is no
longer performed to validate external messages. Whereas if error manifestation in messages
is indeterministic, an erroneous process state may left behind error recovery, which in turn,
could eventually lead to system failure. Consider the scenario illustrated in Figure 2, if a
residual fault in Pyw causes an error condition before Pyw sends P2 message rnl and the
error condition is subsequently manifested in ml, then P2 gets contaminated. However, if
the error condition in the contaminated P2 is not manifested in MI, the external message P2

subsequently intends to send, then the corresponding AT will be unable to detect the state
contamination. It follows that the contaminated process state will be saved in checkpoints
Bk+l and Bk+2. Consequently, if Prw fails AT when attempting to send M2, P2 will rollback
to B k + 2 that contains dormant error conditions; and PYid will simply roll forward because
its process state is considered non-contaminated by the protocol (regardless PYld may gets
contaminated through messages mh and ml, from P2). Although the process state of P2

reflected in B k + 2 and the process state of PYld upon recovery are globally consistent, the
dormant error conditions may cause the system to fail eventually.

Note that criteria C1, C2 and C3 for the ideal execution environment of the MDCD
protocol are similar to but stronger than assumptions Al , A2 and A3 based which we devise
the protocol (Section 3.1), respectively. In order to validate the effectiveness of the protocol
with respect to reliability improvement under realistic, non-ideal conditions, we carry out
probabilistic modeling by relaxing the criteria for the ideal environment as described below.

4.2 SAN Models

Stochastic activity network, a variant of stochastic Petri net (SPN), is first introduced in
[la] and currently employed in evaluation tools such as UltraSAN [13]. Through the use of
additional primitives such as cases, input gates and output gates, SANS have a relatively rich
syntax for the purpose of specifying a complex stochastic process. Specifically, cases permit

9

an expression of uncertainty about the marking that results from the “completion of an
activity” (analogous to the “firing of an SPN transition”), specified by a discrete probability
distribution over the cases of that activity. Moreover, the values of this distribution can
depend on the marking of the network. In other words, SANs permit an explicit specifica-
tion of spatial as well as temporal uncertainty. Input and output gates associated with an
activity describe, respectively, how that activity is enabled and how its completion affects
the subsequent marking of the network. More precisely, input gates permit a functional
specification of the enabling predicate and marking updates; output gates specify how the
markings of the output places are altered when the activity completes.

Recall that the MDCD protocol is intended to achieve error containment and recovery
efficiency by discriminating between the individual software components with respect to our
confidence in their reliability. Accordingly, the behavior of the three processes, namely,
PYw, P:ld and P2, resulting from the protocol exhibit little symmetry, which could lead to a
complex model. However, by exploiting SANs’ marking dependent specification capability,
we obtain a rather concise SAN model that captures all the relevant details of the system
behavior resulting from the MDCD protocol, as shown in Figure 3.

The SAN representation can be viewed consisting of three parts. The major components
of the left part are the timed activities PlNec, PlOec and P2ec which represent the error
condition occurrence in P?”, P:ld and P2, respectively. By assigning a non-zero (Poisson)
failure rate to each of the timed activities, we relax criterion C l . Recall that P;ld and P2

are regarded as high-confidence components in the system by the MDCD protocol, meaning
that the error conditions in P;ld and P2 caused by their own faults will be neglected by
the error containment and recovery mechanisms of the protocol. This necessitates different
representations of error conditions caused by the faults in differing processes. Therefore,
while the output gate PlNerr sets the marking of the output place PlNctn to one upon the
completion of PlNec, the output gates PlOerr and P2err will result in two tokens in PlOctn
and P2ctn, upon the completion of PlOec and P2ec, respectively.

The middle part of the SAN representation comprises the timed activities PINmsg, PlOmsg
and P2msg. These three activities play important roles in representing the interdependen-
cies among the processes in terms of error contamination. By specifying marking-dependent
probability distributions over the cases of these timed activities, uncertainty about the man-
ifestation of error conditions in a contaminated process state in the messages generated by
the process is explicitly represented, which enables us to relax criterion C2. As shown in
Table 1, the possible combinations of the characteristics of an outgoing message from Pyw
are enumerated by the cases of the activity PINmsg. Specifically, each message is first char-
acterized by the external and internal message types probabilistically. And if the message is

10

Figure 3: SAN Model for the MDCD Protocol

generated when the process is in an erroneous state, which will be indicated by the marking
of the input place PlNctn, then the message will be further characterized probabilistically
with respect to whether being affected by the error conditions in the process state. How-
ever) for the circumstance where the process state of Pf"" is not erroneous, which will be
indicated by the empty marking of PINctn, the above uncertainty is irrelevant. Accordingly)
by assigning a zero probability to each, cases 3 and 4 which represent erroneous internal and
external messages) respectively, become degenerate. The timed activities P2msg and PlOmsg
are specified in a similar manner. However) the output functions of PlOmsg are simpler due
to that the messages of P:ld are suppressed prior to error recovery and thus will not influence
the correctness of other processes.

Message-passing caused process state contaminations are represented by the output gates
PlNcP2, PlOcP2 and P2cP1 which are connected to the cases (of the timed activities PINmsg,
PlOmsg and P2msg, respectively) representing erroneous internal messages. Because C1 is
relaxed in this model whereas P7ld and P2 are not considered as the sources of process state

11

Activity
PlNmsg

Case
I

2

3

4

Table 1: Case Probabilities for Timed Activity PlNmsg
” Probability

i f (MARK(PlNctn)==O)
/* non-contaminated in t e rna l msg from a non-contaminated s t a t e */
return(1-GLOBALD(prob-ext)) ;
/* non-contaminated in t e rna l msg from a contaminated s t a t e */
else r e tu rn ((I-GLOBALD(prob-ext)) * (I-GLOBALD(prob-sZm))) ;
i f (MARK(PlNctn)==O)
/* non-contaminated external msg from a non-contaminated state */
return(GLOBALD(pr0b-ext)) ;
/* non-contaminated external msg from a contaminated s t a t e */
e l s e return(GLOBALD(pr0b-ext) * (I-GLOBALD(prob-sZm))) ;
i f (MARK(PlNctn)==O)
/* contaminated internal msg from a non-contaminated s t a t e */
return(ZER0) ;
/* contaminated internal msg from a contaminated s t a t e */
else r e tu rn ((1-GLOBALD(prob-ext)) *GLOBALD(prob-sZm)) ;
i f (MARK(PlNctn)==O)
/* contaminated external msg from a non-contaminated s t a t e */
return(ZER0) ;
/* contaminated external msg from a contaminated s t a t e */
e l s e r e t u r n (GLOBALD (prob-ext) *GLOBALD (prob-sZm)) ;

contamination by the MDCD protocol, we again need to make the representations of the
resulting erroneous states discriminable with respect to the source of the contamination.
Accordingly, as shown in Table 2, each of the output functions of PlNcP2, PlOcP2 and
P2cP1 first examines whether the “target” process state or P2) is already contaminated
by its own error and if so, the marking that indicates the own-error caused process state
contamination will be preserved.

Table 2: Output Gate Definitions for Modeling Error Contamination
Gate

i f (MARK(P2ctn) != 2) PINcP2
Definition

MARK(P2ctn) = 1 ;
MARK(dirtybit) = I ;

PlOcP2
MARK (P2ctn) =I ;
i f (MARK(P2ctn) != 2)

P2cPl i f (MARK(Pl0ctn) != 2)
MARK(Pl0ctn) = 1;
i f (MARK(P1Nctn) == 0)
MARK(P1Nctn) = I ;

The output gates PINok-ext and P2ok-ext are connected to, respectively, the cases of
PlNmsg and P2msg that represent successful external message sending. The output functions

12

of these two gates are just resetting the marking of the place d i r t y - b i t (to zero), which
implies that the process state of P2 is validated through a successful AT. Although P2 will
not perform AT for its external messages if its process state is not considered contaminated
according to the MDCD protocol, a separate representation for this scenario is not required.
This is because the marking of d i r t y - b i t would be zero before the completion of the ac-
tivity P2msg for this scenario and thus resetting will have no effect. This in turn, implicitly
represents the scenario that P2 sends a correct external message (when its process state is
considered not contaminated) without performing AT.

The right part of the SAN model consists of instantaneous activities PlNat and P2at. The
first and second cases (in a top-down order) of each of the activities, respectively, represent
the scenarios where an erroneous external message that is detected by AT triggers error
recovery and an undetected erroneous external message causes system failure. For the first
case, the corresponding output gates will 1) set the marking of the place d i r t y - b i t to zero,
and 2) set the markings of the places PlOctn and P2ctn to zero if the markings prior to the
completion of P2at are equal to one, implying the rollback recovery brings the processes to
the non-contaminated states saved in their most recent checkpoints. Meanwhile, the marking
of PlNctn will be set to two, indicating that Pyw stops execution upon error recovery. On
the other hand, if the marking of PlOctn or P2ctn is equal to two, which implies that the
state contamination is caused by an error of P71d or P2 itself, respectively, the marking will
not be altered by the output gates representing recovery actions. This is because the MDCD
protocol does not consider that P7ld and P2 are the potential sources of error contamination
and thus will not be able to assure the global state after recovery to be free of the error
conditions caused by P?ld and P2 themselves. The second cases of the activities PlOat and
P2at are self-explanatory, i.e., the outcome (an undetected erroneous external message) will
simply set the marking of the place f a i l u r e to one. The case probability specification of
P2at as shown in Table 3 is also marking dependent. This is necessary because P2 does
not perform AT for its external messages 1) after error recovery, or 2) when its process
state is considered not contaminated. It is worth to note that the marking dependent case
probability specification indeed treats the above two scenarios as a limiting case in which
the coverage of AT is zero.

In order to evaluate the effectiveness of the MDCD protocol in terms of reliability im-
provement. We also construct a SAN model which represents the “baseline system” where
the MDCD protocol is not applied. The model is shown in Figure 4, which is quite simple
and self-explanatory.

13

Table 3: Case Probabilities for instantaneous Activity P2at

Activity Probability Case
P2at 1

r e t u r n (GLOBALD (at-coverage)) ;
/* AT is performed before recovery */
i f (MARK(P1Nctn) == 1 && MARK(dirtybit) == 1)

/* AT is not performed af te r recovery o r when d i r t y b i t is zero */
I r e tu rn (ZERO) ;

1 2 1 i f (MARK(P1Nctn) == 1 && MARK(dirtybit) == 1)
/* AT is performed before recovery */
r e t u r n (1-GLOBALD(at-coverage)) ;
/* AT is not performed af te r recovery o r when d i r ty -b i t is zero */
r e t u r n (1) ;

Figure 4: SAN Model for the Baseline System

4.3 Numerical Results

Based on the SAN models developed in the previous section, we analyze the effectiveness
of the MDCD protocol using the evaluation tool UltraSAN [13]. In particular, we define
reliability as the probability that the system does not deliver erroneous commands to devices
(Le., erroneous external messages) prior to time t. Letting the reliability measures for the
system that applies the MDCD protocol and for the baseline system be denoted as RyDCD
and R:me, respectively, the numerical solutions of the measures can be obtained by defining a
reward rate one for each state of the SAN models in which the marking of the place f a i l u r e
equals to one and computing the expected rewards at time t .

As mentioned earlier, the central purpose of the analysis is to validate the effectiveness of
the MDCD protocol, in terms of reliability improvement, under the circumstance where the
criteria for an ideal execution environment for the protocol are not satisfied. Accordingly, we
focus on examining the reliability improvement in an environment where 1) the old software
components (corresponding to P:ld and P2) are not perfectly reliable, '2) the probability that

14

the error conditions in a contaminated process state are manifested in the messages generated
by the corresponding process is less than one, and 3) the coverage of AT is imperfect. Before
we proceed to describe the numerical results, we define the following notation:

pnew Poisson failure rate of a process corresponding to a newly upgraded software
version (corresponding to the rate of the timed activity PlNec).

pold Poisson failure rate of a process corresponding to an old software version
(corresponding to the rates of the timed activities PlNec and P2ec).

pszm Probability that error conditions in a process state are manifested in a mes-
sage generated by the corresponding process (corresponding to prob-s2m)

c Coverage of an acceptance test (corresponding to at-coverage).

X Poisson message sending rate of a process (corresponding to the rates of
the timed activities of PlNmsg, PlOmsg and P2msg).

pext Probability that the message a process attempts to send is an external
message (corresponding to prob-ext).

We first examine the effectiveness of the MDCD protocol by evaluating RyDCD and
R:,', for a mission period of lo4 hours, as a function of pnew. The value assignment for
other parameters is shown in Table 4, where all the parameters involving time (durations,
rates, etc.) presume that time is quantified in hours. The numerical results are displayed in
Figure 5.

Table 4: Parameter Value Assignment

pold pext X c Ps2m
0.9 0.2 10 0.95

The curves in Figure 5 show that 1) when pnew is below the benefit from applying
the MDCD protocol is not appreciable; 2) when pnew becomes or higher, the reliability
improvement becomes increasingly significant; and 3) after pnew reaches 5 x R;""
apparently turns to be unacceptable while RFDCD remains reasonable. Thus, based on this
particular setting which is rather conservative with respect to the values of pszm and c, we
can observe that the MDCD protocol will offer significant benefit as surmised when the
new version is appreciably less reliable than the old version. In other words, the protocol
can achieve its goal without requiring the old version of the upgraded software component
to be perfectly or extremely reliable. Another interest insight the curves provide to us is
that, after pnew reaches 0.001, RpDCD not only remains reasonable but also stays steady,

0 . 9

0 . 8 I
0 . 7 -

x
0 0 . 6 -
-d
4
-d

2 0.5

- 2 0 . 4

-
-d
4

0 . 2 0 . 3 i

i

With MDCD protocol -
O .

le-08 le-07 le-06 le-05 0 . 0 0 0 1 0.001 0 . 0 1 0 . 1 1
0 ' ' . I ' ' , I ' ' . I ' ' . I

- Without MDCD protocol -
- . A b-2 2 0 .=.h s -2 '

Failure Rate of Upgraded Software Compoment

Figure 5: Reliability as a Function of pne,

regardless further increase of the failure rate of the new version. The underlying reason for
this desirable result is the following: A higher pnew will lead to a greater likelihood that
error recovery will take place at an earlier time (which implies that P:ld will take over Ppw
sooner); as a result, pold will dominate the reliability of the system.

To confirm the above observations from a different perspective, we conduct another anal-
ysis that evaluates RyDCD and @,' as a function of pold. We again use the parameter values
shown in Table 4 but fix pnew to and let pold become a variable parameter. The numer-
ical results are shown in Figure 6. The observations we get from these results are consistent
with those from the previous study. That is, the reliability improvement resulting from the
use of the MDCD protocol will be significant if is equal to or less than a value that is
an order of magnitude smaller than pnew. On the other hand, the curves reveal that the
effectiveness of the protocol increases at a slower pace after pold reaches lop6 and becomes
practically stable after decreases to This indicates the following: Although the
effectiveness of the protocol is an increasing function of the reliability of the old version in
general, it is bounded upper collectively by other system attributes, namely, the coverage of
AT, the reliability of the new version, and the likelihood of dormant error conditions that
are not manifested in the messages prior to recovery action.

Next we study the effect of AT'S coverage on the effectiveness of the protocol. We use
again the set of parameter values in Table 4 but fixing pnew and pold to and lo-', re-

16

spectively, and letting c become a variable parameter. For the sake of illustration, we present
the coverage of AT and the evaluation results (RyDCD and in their complimentary
forms in Figure 7. The curves show that so long as AT’S “uncoverage” is less than 0.1 (Le., c
is greater than 0.9), the unreliability reduction (i.e., reliability improvement) from applying
the MDCD protocol will be significant.

1

0 . 9

0 . 8

c,
x
;= 0 . 7

9
-4

0 . 6
aJ e:

0 . 5

0 . 4

0 . 3

t Without MDCD protocol “8-
\

I . I . I . I . I .
. ~-

l e - 1 0 l e - 0 9 l e - 0 8 l e - 0 7 l e - 0 6 l e - O S 0 . 0 0 0 1

F a i l u r e Rate o f N o n - U p g r a d e d S o f t w a r e C o m p o m e n t

Figure 6: Reliability as a Function of P&J

We also conduct an evaluation to study the effect of psZm on the effectiveness of the MDCD
protocol. Rather surprisingly, reliability improvement from applying the protocol is relatively
insensitive to the variations of this parameter. This is indeed a reasonable result because
there exist some tradeoffs. Specifically, while a greater value of ps2m tends to reduce the
likelihood of dormant error conditions in process states left behind recovery, it amplifies the
vulnerability of error contamination among interacting processes (through error condition
manifestation in internal messages). In other words, the two types of effects compensate
each other, collectively resulting in a negligible amount of impact on the effectiveness of the
protocol.

5 Summary and Future Work

We have presented an analysis on the effectiveness of the MDCD protocol, an error con-
tainment and recovery protocol for onboard software upgrading. By exploiting inherent

17

0 . 1 r I I I I

0 . 0 9

0 . 0 8

0 . 0 7

With MDCD protocol -
Without MDCD protocol -

0 . 0 1

0
0 . 0 0 0 1 0 . 0 0 1 0 . 0 1 0 . 1 1

Uncoverage of Acceptance Test

Figure 7: Unreliability as a Function of AT Coverage

system resource redundancies and discriminating interacting software components in the
system with respect to our confidence on their reliability, the MDCD protocol achieves its
low development cost and low performance cost objective. In particular, the message driven
confidence driven nature of the protocol eliminates the need for costly process coordination
or atomic action, while guaranteeing the system to reach a consistent global state upon the
completion of the rollback or roll-forward actions carried out by individual processes during
error recovery.

Aimed at validating the effectiveness of the MDCD protocol with respect to its ability, in
a non-ideal execution environment, to enhance system reliability when a software component
undergoes onboard upgrading, we conduct a SAN model based analysis. SANS’ capability of
explicitly representing the interdependencies among system attributes enables us to precisely
characterize system behavior resulting from the use of the protocol that are relevant to
the reliability assessment. Based on the SAN models, we focus on analyzing the effects
of the system attributes, that violate the criteria for the ideal execution environment for
the MDCD protocol, on the effectiveness of the protocol. The analysis results confirm
the protocol’s ability of enhancing reliability for onboard software upgrading in a non-ideal
execution environment. Moreover, the model-based analysis provides to us useful insights
about the system behavior resulting from the use of the protocol when the criteria for an
ideal execution environment are relaxed to various extents, facilitating effective utility of the

18

protocol.
I t is worth to mention that the MDCD protocol described in this paper can be extended

and generalized. In particular, the extension and generalization will be aimed at applying
the methodology to the distributed systems in which we can discriminate between interact-
ing software components with respect to their reliability. Indeed, a number of factors other
than upgrading may result in differing levels of confidence in different software components
in a system, for example, we may have better confidence in a software component with
lower complexity or higher testability. In other words, software components in a distributed
application may be categorized into two groups according to our confidence in their relia-
bility. Analogous to the strategies used by the MDCD protocol, the high confidence group
can be exploited to enhance the efficiency of error containment and recovery. We plan to
conduct model-based studies to investigate into the feasibility of generalizing the concepts
and framework of the MDCD protocol.

References

[l] L. Alkalai and A. T. Tai, “Long-life deep-space applications,” IEEE Computer, vol. 31,
pp. 37-38, Apr. 1998.

[Z] J. L. Lions (The Chairman of the Board), ARIANE 5 Flight 501 Failure, July 1996.
http:/ /sspgl.bnsc.rl .ac.uk/Share/ISTP/ariane5r.htm.

[3] A. AviBienis, “Towards systematic design of fault-tolerant systems,” IEEE Computer,
vol. 30, pp. 51-58, Apr. 1997.

[4] J. Rendleman, “MCI WorldCom blames Lucent software for outage,” in PC
Week, Ziff-Davis, August 16, 1999. h t t p : //www . zdnet . com/pcweek/stories/news/
0,4153,2318289,OO.html.

[5] L. Sha, J. B. Goodenough, and B. Pollak, “Simplex architecture: Meeting the challenges
of using COTS in high-reliability systems,” CrossTalk: The Journal of Defense Software
Engineering, Apr. 1998.

[6] D. Powell et al., “GUARDS: A generic upgradable architecture for real-time dependable
systems,” IEEE Trans. Parallel and Distributed Systems, vol. 10, pp. 580-599, June
1999.

19

http://sspgl.bnsc.rl.ac.uk/Share/ISTP/ariane5r.htm

[7] A. T. Tai and E(. S. Tso, “On-board maintenance for affordable, evolvable and depend-
able spaceborne systems,” Phase-I Final Technical Report for Contract NAS8-98179,
IA Tech, Inc., Los Angeles, CA, Oct. 1998.

[8] E. N. Elnozahy, D. B. Johnson, and Y.-M. Wang, “A survey of rollback-recovery pro-
tocols in message-passing systems,” Technical Report CMU-CS-96-181, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA, Oct. 1996.

[9] N. Neves and W. K. Fuchs, “Coordinated checkpointing without direct coordination,”
in Proceedings of the 3rd IEEE International Computer Performance and Dependability
Symposium, (Durham, NC), pp. 23-31, Sept. 1998.

[lo] A. T. Tai and K. S. Tso, “Verification and validation of the algorithms for guarded
software upgrading,” Phase-I1 Interim Technical Progress Report for Contract NAS3-
99125, IA Tech, Inc., Los Angeles, CA, Sept. 1999.

[Ill A. T. Tai, E(. S. Tso, L. Alkalai, S. N. Chau, and W. H. Sanders, “On low-cost error
containment and recovery methods for guarded software upgrading,” (Submitted for
publication), 1999.

X; [12] J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity networks: Structure,
behavior, and application,” in Proc. Int’l Workshop on Timed Petri Nets, (Torino,
Italy), pp. 106-115, July 1985.

-\ [13] W. H. Sanders, W. D. Obal 11, M. A. Qureshi, and F. K. Widjanarko, “The UltraSAN
modeling environment,” Performance Evaluation, vol. 24, no. I, pp. 89-115, 1995.

[14] S. N. Chau, L. Alkalai, J. B. Burt, and A. T. Tai, “The design of a fault-tolerant COTS-
based bus architecture,” in Proceedings of 1999 Pacific Rim International Symposium
on Dependable Computing (PRDC’99), (Hong Kong, China), Dec. 1999.

20

A Error Containment and Recovery Algorithms

i f (outgoing-message-m-ready) {

i f (AT(m) == success) {
if (external(m)) -E

/ / P y maintains its msg count and conveys it t o P2 and P:ld for recovery purpose
msg-count++;
msg-send(m, nul l , device) ;
/ / inform P;ld and P2 t h a t p r i o r messages a re va l id
msg-send("passed-AT", msg-count , P:ld) ;
msg-send("passed-AT" , msg-count , P2) ;

error_recovery(qld, ~ 2) ;
ex i t (e r ro r) ;

3 e l s e {

3
> e l s e { / / m is an in t e rna l message

msg-count++;
msg-send (m, msg-count , P2 ;

3
3
i f (incoming-message-m-arrives) {

application-msg-reception(m) ;
3

Figure 8: Error Containment Algorithm for Pyw

if (outgoing-message-m-ready) {
msg-count++; / / msg-count keeps track of P7ld's own messages
msg-log(m, msg-count); / / suppress and log the outgoing message

3
i f (incoming-message-m-arrives) {

if (m.body == "passed-AT") { // P y o r P2 repor t s a successful AT
VRYW = m.msg-count; / / last va l id msg of P y
i f (d i r ty -b i t == 1) {

d i r ty -b i t = 0 ;
checkpointing(Gld) ;

3
3 e l s e { // application-purpose message from P2

// check the piggybacked d i r t y b i t and own process State
i f (m.dir ty-bi t == I && d i r t y - b i t == 0) {

checkpointing(qld) ;
d i r ty -b i t = 1;

3
application-msg-reception(m) ;

3
3

Figure 9: Error Containment Algorithm for P;ld

21

i f (outgoing-message-m-ready) {
if (external(m)) {

i f (d i r t y - b i t == 1) {

d i r ty -b i t = 0 ;
// msg-count of P2 keeps track of msg sequence number of P y
msg-send(m, nul l , device) ;
msg-send("passed-AT" , msg-count , P71d) ;
checkpointing(P2) ;

error-recovery(qld, ~ 2) ;

i f (AT(m) == success) {

3 e l s e {

3
3 e l s e {

/ / outgoing msg from a clean process state, no check needed
msg-send(m, null , device) ;

3
3 else { // in t e rna l message

msg-send(m, n u l l , P y) ;
/ / piggybacking dirty-bit to msg t o P7ld to s ignal possible contaminat ion
m = append(m, d i r ty -b i t) ;
msg-send(m, n u l l , P:ld) ;

>
3
i f (incoming-message-m-arrives) { // must be from P y

msg-count = m.msg-count;
i f (m. body == "passed-AT") {

i f (d i r t y - b i t == I) {
checkpointing(P2) ;
d i r ty -b i t = 0 ;

3
3 else {

if (d i r ty -b i t == 0) { // checkpointing before gett ing "dirty"
checkpointing(P2) ;
d i r ty -b i t = I ;

3
application-msg-reception(m) ;

3
3

Figure 10: Error Containment Algorithm for P2

i f (d i r ty -b i t == 1)

3
// switch role with P y and go forward
switch-to-active(VV', mSg-COUnt) ;
continue ;

rollback(most-recent-ckpt) ; i f (d i r ty-b i t == 1) {

3
/ / go forward
continue ;

rollback(most-recent-ckpt) ;

(a) For P:ld (b) For P2

Figure 11: Error Recovery Algorithms

22

